
CASM
i

CASM

CASM
ii

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

CASM
iii

Contents

1 Usage 1

2 Source Format Example 2

2.1 Recognised directives . 3

2.2 Expressions . 4

2.3 Character Sets . 5

2.4 Macros . 6

3 Output Format 7

4 Listing 8

5 Z80 CPU 9

5.1 Opcodes . 9

5.2 Options . 10

6 6502 CPU 11

6.1 Opcodes . 11

6.2 Options . 11

CASM
iv

A simple, portable multi-pass assembler

Copyright © 2003-2015 Ian Cowburn <ianc@noddybox.co.uk>

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/-
licenses/gpl-3.0.html

mailto:ianc@noddybox.co.uk
http://www.gnu.org/licenses/gpl-3.0.html
http://www.gnu.org/licenses/gpl-3.0.html

CASM
1 / 11

Chapter 1

Usage

casm file

Assembles file, and places the output in output by default.

CASM
2 / 11

Chapter 2

Source Format Example

The source files follow this basic format:

; Comments
;
label1: equ 0xffff

org $4000;

db "Hello, World\n",0

main jp local_label ; Comments

.local_label
inc a

another:
inc b
jp local_label ; Actually jumps to the following local_label.

.local_label
ret

The source files follow the following rules:

• Any text past a semicolon (;) is discarded as a comment (except when part of a string constant).

• Labels must start in column zero (the left hand most column).

– If the label ends with a colon (:) then the colon is removed.

– If the label doesn’t start with a period (.) then it is assumed a global label.

– If the label starts with a period (.) then it is assumed to be a local label. Local labels are associated with the preceding global
label. If a global label and related local label have the same name, the local label will be used on expansion.

– Any label can be followed by an equ directive, in which case the label is set to that value rather than the current program
counter.

– Labels are case-insensitive.

• Directives and opcodes must appear further along the line (anywhere else other than the left hand column where labels live
basically).

• Strings can either be quoted with single or double quotes; this allows you to put the other quote type inside the string.

CASM
3 / 11

2.1 Recognised directives

All directives are also recognised with an optional period (.) in front of them, and are case insensitive. Directives can also be
used to control the output of a program listing, and the output of the assembly itself. These are documented in further sections.

processor CPU
Sets the processor type to CPU. If omitted then Z80 is the default. Note that this can appear multiple times in the same
file. Currently supported CPU values are Z80 and 6502.

option setting, value
Set options. Options are defined later on, and each CPU can also have its own options. For options that support booleans
(on/off/true/false), the setting can be prefixed with a plus or minus character to switch it on or off respectively.

equ value
Sets the top level label to value. Note this requires a label on the same line.

org value
Sets the program counter (PC) to value. The PC defaults to zero.

ds value[, fill]
Skips on the program counter value bytes. If the optional fill is provided then the bytes are filled with fill, otherwise they
are filled with zero.

db value[, value]
Writes bytes to the current PC. The values can be constants, expressions, labels or strings. Built-in aliases are byte and
text.

dw <value>[, <value>]
Writes words (16-bit values) to the current PC. The values can be constants, expressions or labels. Note that word is a
built-in alias for this directive.

align value[, fill]
Align the PC so that (PC modulus value) is zero. Will error if value is less than 2 or greater that 32768. No values are
written to the skipped bytes unless the optional fill is supplied.

include filename
Includes the source file filename as if it was text entered at the current location.

incbin filename
Includes the binary data in filename at the current PC, as if it was a sequence of db directives with all the bytes from the
file.

alias command, replacement
Creates an alias so that whenever the command command is found in the source it is replaced with replacement. The idea
of this is to make it easier to import sources that use unknown directives, e.g.

alias setaddr,org
alias ldreg,ld

cpu z80

setaddr $8000 ; These two are
org $8000 ; equivalent.

ld a,(hl) ; These two are
ldreg a,(hl) ; equivalent.

nullcmd
Simply does nothing. It’s only real use is as an alias if you wished to strip a directive from a foreign source file.

end
Terminates the input processing. Anything past the directive will be ignored.

CASM
4 / 11

2.2 Expressions

In any of the directives above, where a value is defined, an expression can be entered.

The following formats for constant numbers are supported (note these are illustrated as a regular expression):

"x" or x
A single quoted character will be converted into the appropriate character code.

[1-9][0-9]*
A decimal number, e.g. 42.

0[0-7]*
An octal number, e.g. 052.

0x[0-9a-fA-f]+
A hex number, e.g. 0x2a.

[0-9a-fA-f]+h
A hex number, e.g. 2ah.

$[0-9a-fA-f]+
A hex number, e.g. $2a.

[01]+b
A binary number, e.g. 00101010b

[a-zA-Z_0-9]+
A label, e.g. main_loop.

The following operators are understood. The order here is the order of precedence.

{ }
Brackets used to alter the order of precedence. Note normal parenthesis aren’t used as the assembly language may make
use of them.

~ + -
Bitwise NOT/unary plus/unary minus.

<< >>
Shift left/shift right.

/ * %
Division/multiplication/modulus.

+ -
Addition/subtraction.

All the following have the same precedence, and so will be done left to right.

==
Equality. Returns 1 if the arguments are equal, otherwise zero.

!=
Inequality. Returns 1 if the arguments are unequal, otherwise zero.

< <= > >=
Less than/less than or equal/greater than/greater than or equal. Returns 1 if the arguments are equal, otherwise zero.

All the following have the same precedence, and so will be done left to right.

CASM
5 / 11

&& &
Boolean/bitwise AND. For boolean operation arguments, zero is FALSE, otherwise TRUE.

|| |
Boolean/bitwise OR.

ˆ
Bitwise XOR.

Assembly instructions will also permit these expressions to be used where applicable. As many opcodes use parenthesis to
indicate addressing modes, remember that {} brackets can be used to alter expression precedence.

ld a,{8+2}*2 ; On the Z80 loads A with the value 20
ld a,({8+2}*2) ; On the Z80 loads A with the value stored at

; address 20

Note that the expression is evaluated using a standard C int, and then cast to the appropriate size.

2.3 Character Sets

The assembler has built-in support for a few different character sets. These can be set by using the options charset or codepage,
i.e.

option codepage, <format>
option charset, <format>

The following values can be used for format.

ascii
7-bit ASCII. This is the default.

spectrum
The character codes as used on the Sinclair ZX Spectrum.

zx81
The character codes as used on the Sinclair ZX-81. Lower case letters are encoded as normal upper case letters and upper
case letter will be encoded as inverse upper case letters.

cbm
PETSCII as used on the Commodore Business Machine’s range from the PET to the C128. See https://en.wikipedia.org/-
wiki/PETSCII for more details.

e.g.

option +list
option +list-hex

option charset,ascii
db "Hello",’A’

; $48 $65 $6C $6C $6F $41

option charset,zx81
db "Hello",’A’

; $AD $2A $31 $31 $34 $A6

option codepage,cbm
db "Hello",’A’

; $48 $45 $4C $4C $4F $41

option codepage,spectrum
db "Hello",’A’

; $48 $65 $6C $6C $6F $41

https://en.wikipedia.org/wiki/PETSCII
https://en.wikipedia.org/wiki/PETSCII

CASM
6 / 11

2.4 Macros

Macros can be defined in one of two ways; either parameterless or with named parameters. Macro names are case-insensitive. In
the parameterless mode the special identifier * can be used to expand all arguments, which will be separated with commas.

macro1: macro

ld a,\1
ld b,\2
call \3
defb *

endm

macro2: macro char,junk,interface

ld a,@char
ld b,@junk
call @interface

endm

Note that trying to expand and unknown/missing argument will be replaced with an empty string. Also the two argument
reference styles can be mixed, though obviously the @ form only makes sense in a parameterised macro, e.g.

mac: macro char,junk,interface

ld a,@char
ld b,\2
call @interface

endm

The at symbol (@) used for parameter expansion in named argument macros can be replaced by using the following option, e.g.

option macro-arg-char,&

Note that this is enforced when the macro is used, not when it is defined. Also the character must not be quoted, as that will be
parsed as a string holding the character code of the character.

CASM
7 / 11

Chapter 3

Output Format

By default the assembled code is written to a file called output as raw binary covering the block of memory that the assembly
touched.

This can be controlled with the following options.

option output-file, file
Send the output to file.

option output-type, format
Controls the output format with the following settings

raw
The default raw binary.

spectrum
Generates a Spectrum TAP file for an emulator. The TAP file will be given the same name as the output filename,
and its load address will be set to the start of the created memory. Remember that TAP files can be concatenated, so
the output could be appended to another TAP file containing a BASIC loader for example.

CASM
8 / 11

Chapter 4

Listing

By default no output listing is generated. This can be controlled by the the following options.

option list, <on|off>
Enables/disables listing. The listing will go to stdout.

option list-file, file
Sends the listing to file. Note this should appear before enabling the listing.

option list-pc, <on|off>
Control the output of the current PC in the as a comment preceding the line (so that a listing could be reassembled with no
editing). Defaults to off.

option list-hex, <on|off>
Control the output of the bytes generated by the source line in hex. Defaults to off. If on then the hex is output in a
comment preceding the line (possibly with the PC above), so that a listing is still valid to be assembled.

option list-labels, <on|off|all>
Controls the listing of labels, either off (the default), on to dump label values at the end of the listing and all to dump all
labels, including internally generated private labels for macros.

option list-macros, <off|exec|dump|all>
Controls the listing of macro invocations, either

off
The default; don’t list anything.

exec
List invocations of macros.

dump
Produce a list of macro definitions at the end of the listing.

all
Combine "exec" and "dump"

option list-rm-blanks, <on|off>
Defaults to on. This option causes multiple blank lines to be collapsed down to a single line.

CASM
9 / 11

Chapter 5

Z80 CPU

5.1 Opcodes

The Z80 assembler uses the standard Zilog opcodes, and supports undocumented instructions.

For instructions were the Accumulator can be assumed it can be omitted, and EOR can be used the same as XOR:

xor a,a ; These are equivalent
xor a
eor a,a

and a,b ; These are equivalent
and b

For exchange opcodes with parameters the parameters can be reversed from their official form:

; The official forms
;
ex de,hl
ex af,af’
ex (sp),hl
ex (sp),ix
ex (sp),iy

; Also supported
;
ex hl,de
ex af’,af
ex hl,(sp)
ex ix,(sp)
ex iy,(sp)

Where the high/low register parts of the IX and IY registers are to be used, simply use ixl, iyl, ixh and iyh. Note that the assembler
will accept illegal pairings involving H and L, but these will be warned about:

ld ixh,$e5
ld iyl,iyl

ld ixh,l ; This will be turned into "ld ixh,ixl" and a
; warning will be issued.

ld iyh,ixl ; This will generate an error as the index registers
; have been mixed.

CASM
10 / 11

For bit manipulations that also can copied to a register, these can be represented by adding the destination register as an extra
parameter, e.g.

srl (iy-1),d
set 3,(iy-1),a
res 4,(iy-1),b

For the hidden IN instruction using the flag register the following are all equivalent:

in (c)
in f,(c)

For the hidden OUT instruction using the flag register, $00 or $ff depending on where you’re reading, the following are all
equivalent, where value can be any value at all:

out (c)
out (c),f
out (c),<value>

5.2 Options

The Z80 assembler has no options.

CASM
11 / 11

Chapter 6

6502 CPU

6.1 Opcodes

The 6502 assembler uses the standard Motorola opcodes.

6.2 Options

The 6502 assembler has the following options.

option zero-page, <on|off|auto>
Use Zero-Page addressing for absolute and absolute,X address modes. If mode is set to auto then tries to calculate the
mode based on the value in the last pass. Defaults to off. e.g.

cpu 6502
org $8000

lda $0000,x ; Produces $bd $00 $00
option +zero-page
lda $0000,x ; Produces $b5 $00
lda $1234,x ; Produces an error

option zero-page,auto
lda $00,x ; Produces $b5 $00
lda $8000,x ; Produces $bd $00 $80

	Usage
	Source Format Example
	Recognised directives
	Expressions
	Character Sets
	Macros

	Output Format
	Listing
	Z80 CPU
	Opcodes
	Options

	6502 CPU
	Opcodes
	Options

